Rapid classification of phenotypic mutants of Arabidopsis via metabolite fingerprinting.

نویسندگان

  • Gaëlle Messerli
  • Vahid Partovi Nia
  • Martine Trevisan
  • Anna Kolbe
  • Nicolas Schauer
  • Peter Geigenberger
  • Jychian Chen
  • Anthony C Davison
  • Alisdair R Fernie
  • Samuel C Zeeman
چکیده

We evaluated the application of gas chromatography-mass spectrometry metabolic fingerprinting to classify forward genetic mutants with similar phenotypes. Mutations affecting distinct metabolic or signaling pathways can result in common phenotypic traits that are used to identify mutants in genetic screens. Measurement of a broad range of metabolites provides information about the underlying processes affected in such mutants. Metabolite profiles of Arabidopsis (Arabidopsis thaliana) mutants defective in starch metabolism and uncharacterized mutants displaying a starch-excess phenotype were compared. Each genotype displayed a unique fingerprint. Statistical methods grouped the mutants robustly into distinct classes. Determining the genes mutated in three uncharacterized mutants confirmed that those clustering with known mutants were genuinely defective in starch metabolism. A mutant that clustered away from the known mutants was defective in the circadian clock and had a pleiotropic starch-excess phenotype. These results indicate that metabolic fingerprinting is a powerful tool that can rapidly classify forward genetic mutants and streamline the process of gene discovery.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biocontrol Activities of Gamma Induced Mutants of Trichoderma harzianum against some Soilborne Fungal Pathogens and their DNA Fingerprinting

Background: Random induced mutation by gamma radiation is one of the genetic manipulation strategies to improve the antagonistic ability of biocontrol agents. Objectives: This study aimed to induce mutants with more sporulation, colonization rate leading to enhanced antagonistic ability (in vitro assay) comparing to wild type (WT) and the assessment of genetic differences (in situ evaluat...

متن کامل

Enhancement of plant metabolite fingerprinting by machine learning.

Metabolite fingerprinting of Arabidopsis (Arabidopsis thaliana) mutants with known or predicted metabolic lesions was performed by (1)H-nuclear magnetic resonance, Fourier transform infrared, and flow injection electrospray-mass spectrometry. Fingerprinting enabled processing of five times more plants than conventional chromatographic profiling and was competitive for discriminating mutants, ot...

متن کامل

Molecular genetic control of leaf lifespan in plants - A review

Leaf senescence constitutes the last stage of leaf development in plants and proceeds through a highly regulated program in order to redistribution of micro- and macro-nutrients from the senescing leaves to the developing/growing plant organs. Initiation and progression of leaf senescence is accompanied by massive sequential alterations at various levels of leaf biology including leaf morpholog...

متن کامل

Investigating plant-plant interference by metabolic fingerprinting.

New analytical developments in post-genomic technologies are being introduced to the field of plant ecology. FT-IR fingerprinting coupled with chemometrics via cluster analysis is proposed as a tool for correlating global metabolic changes with abiotic or biotic perturbation and/or interactions. The current study concentrates on detecting chemical responses by inter-species competition between ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 143 4  شماره 

صفحات  -

تاریخ انتشار 2007